<p>卫生数据仓库及其数据挖掘技术;<br /> 5、信息化政策。<br /> (二)公共卫生信息系统<br /> 1、传染病与突发公共卫生事件网络直报系统建设与应用;<br /> 2、疾病<a class="hotstyle" href="http://www.chinacdc.cn/n272442/n272530/n294176/index.html" target="_blank">监测</a>信息系统研究与应用;<br /> 3、突发公共卫生事件应急指挥决策系统建设</p><p>------------------------------------------------------------</p><p>这几个我们都在做,头大的东西就是算法。当流感病毒变种的时候,一切趋势模型都变得无效。</p><p>这篇文章可以好好看看。</p><p><strong><font size="4">Algorithms for rapid outbreak detection: a research synthesis.<br /><br /></font></strong><a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Buckeridge+DL%22%5BAuthor%5D" target="_blank"><strong>Buckeridge DL</strong></a>, <a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Burkom+H%22%5BAuthor%5D" target="_blank"><b>Burkom H</b></a>, <a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Campbell+M%22%5BAuthor%5D" target="_blank"><b>Campbell M</b></a>, <a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Hogan+WR%22%5BAuthor%5D" target="_blank"><b>Hogan WR</b></a>, <a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Moore+AW%22%5BAuthor%5D" target="_blank"><b>Moore AW</b></a>.<br /><br /> alo Alto VA Health Care System, Palo Alto, CA, USA. david.buckeridge@stanford.edu<br /><br />The threat of bioterrorism has stimulated interest in enhancing public health surveillance to detect disease outbreaks more rapidly than is currently possible. To advance research on improving the timeliness of outbreak detection, the Defense Advanced Research Project Agency sponsored the Bio-event Advanced Leading Indicator Recognition Technology (BioALIRT) project beginning in 2001. The purpose of this paper is to provide a synthesis of research on outbreak detection algorithms conducted by academic and industrial partners in the BioALIRT project. We first suggest a practical classification for outbreak detection algorithms that considers the types of information encountered in surveillance analysis. We then present a synthesis of our research according to this classification. The research conducted for this project has examined how to use spatial and other covariate information from disparate sources to improve the timeliness of outbreak detection. Our results suggest that use of spatial and other covariate information can improve outbreak detection performance. We also identified, however, methodological challenges that limited our ability to determine the benefit of using outbreak detection algorithms that operate on large volumes of data. Future research must address challenges such as forecasting expected values in high-dimensional data and generating spatial and multivariate test data sets.</p> |